Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Infect Control Hosp Epidemiol ; : 1-10, 2023 May 05.
Article in English | MEDLINE | ID: covidwho-2318560

ABSTRACT

OBJECTIVE: To examine temporal changes in coverage with a complete primary series of coronavirus disease 2019 (COVID-19) vaccination and staffing shortages among healthcare personnel (HCP) working in nursing homes in the United States before, during, and after the implementation of jurisdiction-based COVID-19 vaccination mandates for HCP. SAMPLE AND SETTING: HCP in nursing homes from 15 US jurisdictions. DESIGN: We analyzed weekly COVID-19 vaccination data reported to the Centers for Disease Control and Prevention's National Healthcare Safety Network from June 7, 2021, through January 2, 2022. We assessed 3 periods (preintervention, intervention, and postintervention) based on the announcement of vaccination mandates for HCP in 15 jurisdictions. We used interrupted time-series models to estimate the weekly percentage change in vaccination with complete primary series and the odds of reporting a staffing shortage for each period. RESULTS: Complete primary series vaccination among HCP increased from 66.7% at baseline to 94.3% at the end of the study period and increased at the fastest rate during the intervention period for 12 of 15 jurisdictions. The odds of reporting a staffing shortage were lowest after the intervention. CONCLUSIONS: These findings demonstrate that COVID-19 vaccination mandates may be an effective strategy for improving HCP vaccination coverage in nursing homes without exacerbating staffing shortages. These data suggest that mandates can be considered to improve COVID-19 coverage among HCP in nursing homes to protect both HCP and vulnerable nursing home residents.

2.
MMWR Morb Mortal Wkly Rep ; 72(4): 95-99, 2023 Jan 27.
Article in English | MEDLINE | ID: covidwho-2217721

ABSTRACT

Nursing home residents have been disproportionately affected by COVID-19; older age, comorbidities, and the congregate nature of nursing homes place residents at higher risk for infection and severe COVID-19-associated outcomes, including death (1). Studies have demonstrated that receipt of a primary COVID-19 mRNA vaccination series (2) and monovalent booster doses (3) is effective in reducing COVID-19-related morbidity and mortality in this population. Public health recommendations for staying up to date with COVID-19 vaccination have been revised throughout the pandemic response, most recently to include an updated (bivalent) booster dose, which protects against both the ancestral strain of SARS-CoV-2 and recent Omicron variants BA.4 and BA.5 (4). However, data on the effectiveness of staying up to date, including with bivalent booster doses, are lacking among nursing home residents. CDC's National Healthcare Safety Network (NHSN) analyzed surveillance data to examine weekly incidence rates of COVID-19 among nursing home residents by up-to-date vaccination status (receipt of a bivalent booster dose or completion of a primary series or receipt of a monovalent booster dose within the previous 2 months [i.e., not yet eligible to receive a bivalent booster dose]).* Up-to-date vaccination status among nursing home residents remained low throughout the study period, increasing to 48.9% by the week ending January 8, 2023. During October 10, 2022-January 8, 2023, the COVID-19 weekly incidence rates (new cases per 1,000 nursing home residents) among residents who were not up to date with COVID-19 vaccination were consistently higher than those among residents who were up to date. Moreover, the weekly incidence rate ratios (IRRs) indicated that residents who were not up to date with COVID-19 vaccines had a higher risk for acquiring SARS-CoV-2 than their up-to-date counterparts (IRR range = 1.3-1.5). It is critical that nursing home residents stay up to date with COVID-19 vaccines and receive a bivalent booster dose to maximize protection against COVID-19.


Subject(s)
COVID-19 , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Incidence , COVID-19 Vaccines , SARS-CoV-2 , Nursing Homes , Vaccination
3.
MMWR Morb Mortal Wkly Rep ; 71(18): 633-637, 2022 May 06.
Article in English | MEDLINE | ID: covidwho-1836055

ABSTRACT

Nursing home residents have experienced disproportionally high levels of COVID-19-associated morbidity and mortality and were prioritized for early COVID-19 vaccination (1). Following reported declines in vaccine-induced immunity after primary series vaccination, defined as receipt of 2 primary doses of an mRNA vaccine (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) or 1 primary dose of Ad26.COV2 (Johnson & Johnson [Janssen]) vaccine (2), CDC recommended that all persons aged ≥12 years receive a COVID-19 booster vaccine dose.* Moderately to severely immunocompromised persons, a group that includes many nursing home residents, are also recommended to receive an additional primary COVID-19 vaccine dose.† Data on vaccine effectiveness (VE) of an additional primary or booster dose against infection with SARS-CoV-2 (the virus that causes COVID-19) among nursing home residents are limited, especially against the highly transmissible B.1.1.529 and BA.2 (Omicron) variants. Weekly COVID-19 surveillance and vaccination coverage data among nursing home residents, reported by skilled nursing facilities (SNFs) to CDC's National Healthcare Safety Network (NHSN)§ during February 14-March 27, 2022, when the Omicron variant accounted for >99% of sequenced isolates, were analyzed to estimate relative VE against infection for any COVID-19 additional primary or booster dose compared with primary series vaccination. After adjusting for calendar week and variability across SNFs, relative VE of a COVID-19 additional primary or booster dose was 46.9% (95% CI = 44.8%-48.9%). These findings indicate that among nursing home residents, COVID-19 additional primary or booster doses provide greater protection against Omicron variant infection than does primary series vaccination alone. All immunocompromised nursing home residents should receive an additional primary dose, and all nursing home residents should receive a booster dose, when eligible, to protect against COVID-19. Efforts to keep nursing home residents up to date with vaccination should be implemented in conjunction with other COVID-19 prevention strategies, including testing and vaccination of nursing home staff members and visitors.


Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Nursing Homes , United States/epidemiology , Vaccines, Synthetic , mRNA Vaccines
4.
Am J Infect Control ; 49(12): 1554-1557, 2021 12.
Article in English | MEDLINE | ID: covidwho-1520638

ABSTRACT

To protect both patients and staff, healthcare personnel (HCP) were among the first groups in the United States recommended to receive the COVID-19 vaccine. We analyzed data reported to the U.S. Department of Health and Human Services (HHS) Unified Hospital Data Surveillance System on COVID-19 vaccination coverage among hospital-based HCP. After vaccine introduction in December 2020, COVID-19 vaccine coverage rose steadily through April 2021, but the rate of uptake has since slowed; as of September 15, 2021, among 3,357,348 HCP in 2,086 hospitals included in this analysis, 70.0% were fully vaccinated. Additional efforts are needed to improve COVID-19 vaccine coverage among HCP.


Subject(s)
COVID-19 Vaccines , COVID-19 , Delivery of Health Care , Hospitals , Humans , Personnel, Hospital , SARS-CoV-2 , United States , United States Dept. of Health and Human Services , Vaccination Coverage
5.
Lancet ; 399(10320): 152-160, 2022 01 08.
Article in English | MEDLINE | ID: covidwho-1506422

ABSTRACT

BACKGROUND: In the USA, COVID-19 vaccines became available in mid-December, 2020, with adults aged 65 years and older among the first groups prioritised for vaccination. We estimated the national-level impact of the initial phases of the US COVID-19 vaccination programme on COVID-19 cases, emergency department visits, hospital admissions, and deaths among adults aged 65 years and older. METHODS: We analysed population-based data reported to US federal agencies on COVID-19 cases, emergency department visits, hospital admissions, and deaths among adults aged 50 years and older during the period Nov 1, 2020, to April 10, 2021. We calculated the relative change in incidence among older age groups compared with a younger reference group for pre-vaccination and post-vaccination periods, defined by the week when vaccination coverage in a given age group first exceeded coverage in the reference age group by at least 1%; time lags for immune response and time to outcome were incorporated. We assessed whether the ratio of these relative changes differed when comparing the pre-vaccination and post-vaccination periods. FINDINGS: The ratio of relative changes comparing the change in the COVID-19 case incidence ratio over the post-vaccine versus pre-vaccine periods showed relative decreases of 53% (95% CI 50 to 55) and 62% (59 to 64) among adults aged 65 to 74 years and 75 years and older, respectively, compared with those aged 50 to 64 years. We found similar results for emergency department visits with relative decreases of 61% (52 to 68) for adults aged 65 to 74 years and 77% (71 to 78) for those aged 75 years and older compared with adults aged 50 to 64 years. Hospital admissions declined by 39% (29 to 48) among those aged 60 to 69 years, 60% (54 to 66) among those aged 70 to 79 years, and 68% (62 to 73), among those aged 80 years and older, compared with adults aged 50 to 59 years. COVID-19 deaths also declined (by 41%, 95% CI -14 to 69 among adults aged 65-74 years and by 30%, -47 to 66 among those aged ≥75 years, compared with adults aged 50 to 64 years), but the magnitude of the impact of vaccination roll-out on deaths was unclear. INTERPRETATION: The initial roll-out of the US COVID-19 vaccination programme was associated with reductions in COVID-19 cases, emergency department visits, and hospital admissions among older adults. FUNDING: None.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , Emergency Service, Hospital/statistics & numerical data , Mortality/trends , Patient Admission/statistics & numerical data , Aged , Aged, 80 and over , Female , Hospitals , Humans , Incidence , Male , United States/epidemiology , Vaccination/statistics & numerical data
6.
Clin Infect Dis ; 73(7): 1805-1813, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455252

ABSTRACT

BACKGROUND: The evidence base for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is nascent. We sought to characterize SARS-CoV-2 transmission within US households and estimate the household secondary infection rate (SIR) to inform strategies to reduce transmission. METHODS: We recruited patients with laboratory-confirmed SARS-CoV-2 infection and their household contacts in Utah and Wisconsin during 22 March 2020-25 April 2020. We interviewed patients and all household contacts to obtain demographics and medical histories. At the initial household visit, 14 days later, and when a household contact became newly symptomatic, we collected respiratory swabs from patients and household contacts for testing by SARS-CoV-2 real-time reverse-transcription polymerase chain reaction (rRT-PCR) and sera for SARS-CoV-2 antibodies testing by enzyme-linked immunosorbent assay (ELISA). We estimated SIR and odds ratios (ORs) to assess risk factors for secondary infection, defined by a positive rRT-PCR or ELISA test. RESULTS: Thirty-two (55%) of 58 households secondary infection among household contacts. The SIR was 29% (n = 55/188; 95% confidence interval [CI], 23%-36%) overall, 42% among children (aged <18 years) of the COVID-19 patient and 33% among spouses/partners. Household contacts to COVID-19 patients with immunocompromised conditions and household contacts who themselves had diabetes mellitus had increased odds of infection with ORs 15.9 (95% CI, 2.4-106.9) and 7.1 (95% CI: 1.2-42.5), respectively. CONCLUSIONS: We found substantial evidence of secondary infections among household contacts. People with COVID-19, particularly those with immunocompromising conditions or those with household contacts with diabetes, should take care to promptly self-isolate to prevent household transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Contact Tracing , Family Characteristics , Humans , United States/epidemiology , Wisconsin
7.
Clin Infect Dis ; 73(7): e1841-e1849, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455251

ABSTRACT

BACKGROUND: Improved understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spectrum of disease is essential for clinical and public health interventions. There are limited data on mild or asymptomatic infections, but recognition of these individuals is key as they contribute to viral transmission. We describe the symptom profiles from individuals with mild or asymptomatic SARS-CoV-2 infection. METHODS: From 22 March to 22 April 2020 in Wisconsin and Utah, we enrolled and prospectively observed 198 household contacts exposed to SARS-CoV-2. We collected and tested nasopharyngeal specimens by real-time reverse-transcription polymerase chain reaction (rRT-PCR) 2 or more times during a 14-day period. Contacts completed daily symptom diaries. We characterized symptom profiles on the date of first positive rRT-PCR test and described progression of symptoms over time. RESULTS: We identified 47 contacts, median age 24 (3-75) years, with detectable SARS-CoV-2 by rRT-PCR. The most commonly reported symptoms on the day of first positive rRT-PCR test were upper respiratory (n = 32 [68%]) and neurologic (n = 30 [64%]); fever was not commonly reported (n = 9 [19%]). Eight (17%) individuals were asymptomatic at the date of first positive rRT-PCR collection; 2 (4%) had preceding symptoms that resolved and 6 (13%) subsequently developed symptoms. Children less frequently reported lower respiratory symptoms (21%, 60%, and 69% for <18, 18-49, and ≥50 years of age, respectively; P = .03). CONCLUSIONS: Household contacts with laboratory-confirmed SARS-CoV-2 infection reported mild symptoms. When assessed at a single timepoint, several contacts appeared to have asymptomatic infection; however, over time all developed symptoms. These findings are important to inform infection control, contact tracing, and community mitigation strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Contact Tracing , Fever , Humans , Prospective Studies , Young Adult
8.
BMC Public Health ; 21(1): 1747, 2021 09 25.
Article in English | MEDLINE | ID: covidwho-1438266

ABSTRACT

BACKGROUND: Optimized symptom-based COVID-19 case definitions that guide public health surveillance and individual patient management in the community may assist pandemic control. METHODS: We assessed diagnostic performance of existing cases definitions (e.g. influenza-like illness, COVID-like illness) using symptoms reported from 185 household contacts to a PCR-confirmed case of COVID-19 in Wisconsin and Utah, United States. We stratified analyses between adults and children. We also constructed novel case definitions for comparison. RESULTS: Existing COVID-19 case definitions generally showed high sensitivity (86-96%) but low positive predictive value (PPV) (36-49%; F-1 score 52-63) in this community cohort. Top performing novel symptom combinations included taste or smell dysfunction and improved the balance of sensitivity and PPV (F-1 score 78-80). Performance indicators were generally lower for children (< 18 years of age). CONCLUSIONS: Existing COVID-19 case definitions appropriately screened in household contacts with COVID-19. Novel symptom combinations incorporating taste or smell dysfunction as a primary component improved accuracy. Case definitions tailored for children versus adults should be further explored.


Subject(s)
COVID-19 , Adult , Child , Cohort Studies , Humans , Pandemics , Polymerase Chain Reaction , SARS-CoV-2
9.
MMWR Morb Mortal Wkly Rep ; 70(36): 1249-1254, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1436412

ABSTRACT

Although COVID-19 generally results in milder disease in children and adolescents than in adults, severe illness from COVID-19 can occur in children and adolescents and might require hospitalization and intensive care unit (ICU) support (1-3). It is not known whether the B.1.617.2 (Delta) variant,* which has been the predominant variant of SARS-CoV-2 (the virus that causes COVID-19) in the United States since late June 2021,† causes different clinical outcomes in children and adolescents compared with variants that circulated earlier. To assess trends among children and adolescents, CDC analyzed new COVID-19 cases, emergency department (ED) visits with a COVID-19 diagnosis code, and hospital admissions of patients with confirmed COVID-19 among persons aged 0-17 years during August 1, 2020-August 27, 2021. Since July 2021, after Delta had become the predominant circulating variant, the rate of new COVID-19 cases and COVID-19-related ED visits increased for persons aged 0-4, 5-11, and 12-17 years, and hospital admissions of patients with confirmed COVID-19 increased for persons aged 0-17 years. Among persons aged 0-17 years during the most recent 2-week period (August 14-27, 2021), COVID-19-related ED visits and hospital admissions in the states with the lowest vaccination coverage were 3.4 and 3.7 times that in the states with the highest vaccination coverage, respectively. At selected hospitals, the proportion of COVID-19 patients aged 0-17 years who were admitted to an ICU ranged from 10% to 25% during August 2020-June 2021 and was 20% and 18% during July and August 2021, respectively. Broad, community-wide vaccination of all eligible persons is a critical component of mitigation strategies to protect pediatric populations from SARS-CoV-2 infection and severe COVID-19 illness.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Emergency Service, Hospital/statistics & numerical data , Facilities and Services Utilization/trends , Hospitalization/trends , Adolescent , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Severity of Illness Index , United States/epidemiology , Vaccination Coverage/statistics & numerical data
10.
Clin Infect Dis ; 72(11): e761-e767, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1249288

ABSTRACT

BACKGROUND: Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has principally been performed through the use of real-time reverse-transcription polymerase chain reaction testing. Results of such tests can be reported as cycle threshold (Ct) values, which may provide semi-quantitative or indirect measurements of viral load. Previous reports have examined temporal trends in Ct values over the course of a SARS-CoV-2 infection. METHODS: Using testing data collected during a prospective household transmission investigation of outpatient and mild coronavirus disease 2019 cases, we examined the relationships between Ct values of the viral RNA N1 target and demographic, clinical, and epidemiological characteristics collected through participant interviews and daily symptom diaries. RESULTS: We found that Ct values are lowest (corresponding to a higher viral RNA concentration) soon after symptom onset and are significantly correlated with the time elapsed since onset (P < .001); within 7 days after symptom onset, the median Ct value was 26.5, compared with a median Ct value of 35.0 occurring 21 days after onset. Ct values were significantly lower among participants under 18 years of age (P = .01) and those reporting upper respiratory symptoms at the time of sample collection (P = .001), and were higher among participants reporting no symptoms (P = .05). CONCLUSIONS: These results emphasize the importance of early testing for SARS-CoV-2 among individuals with symptoms of respiratory illness, and allow cases to be identified and isolated when their viral shedding may be highest.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Humans , Prospective Studies , RNA, Viral/genetics , Viral Load
11.
Pediatrics ; 147(1)2021 01.
Article in English | MEDLINE | ID: covidwho-839914

ABSTRACT

BACKGROUND AND OBJECTIVES: Limited data exist on severe acute respiratory syndrome coronavirus 2 in children. We described infection rates and symptom profiles among pediatric household contacts of individuals with coronavirus disease 2019. METHODS: We enrolled individuals with coronavirus disease 2019 and their household contacts, assessed daily symptoms prospectively for 14 days, and obtained specimens for severe acute respiratory syndrome coronavirus 2 real-time reverse transcription polymerase chain reaction and serology testing. Among pediatric contacts (<18 years), we described transmission, assessed the risk factors for infection, and calculated symptom positive and negative predictive values. We compared secondary infection rates and symptoms between pediatric and adult contacts using generalized estimating equations. RESULTS: Among 58 households, 188 contacts were enrolled (120 adults; 68 children). Secondary infection rates for adults (30%) and children (28%) were similar. Among households with potential for transmission from children, child-to-adult transmission may have occurred in 2 of 10 (20%), and child-to-child transmission may have occurred in 1 of 6 (17%). Pediatric case patients most commonly reported headache (79%), sore throat (68%), and rhinorrhea (68%); symptoms had low positive predictive values, except measured fever (100%; 95% confidence interval [CI]: 44% to 100%). Compared with symptomatic adults, children were less likely to report cough (odds ratio [OR]: 0.15; 95% CI: 0.04 to 0.57), loss of taste (OR: 0.21; 95% CI: 0.06 to 0.74), and loss of smell (OR: 0.29; 95% CI: 0.09 to 0.96) and more likely to report sore throat (OR: 3.4; 95% CI: 1.04 to 11.18). CONCLUSIONS: Children and adults had similar secondary infection rates, but children generally had less frequent and severe symptoms. In two states early in the pandemic, we observed possible transmission from children in approximately one-fifth of households with potential to observe such transmission patterns.


Subject(s)
COVID-19 Nucleic Acid Testing/trends , COVID-19/epidemiology , COVID-19/transmission , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , COVID-19/diagnosis , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Middle Aged , Utah/epidemiology , Wisconsin/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL